Intrinsic glassy-metallic transport in an amorphous coordination polymer

  • Heeger, AJ Nobel Lecture: Semiconductor and Metallic Polymers: The Fourth Generation of Polymer Materials. Rev. mod. Phys. 73681–700 (2001).

    Google Scholar CAS Announcements

  • Bryce, MR Recent advances in conducting charge transfer organic salts. Chem. Soc. Round. 20355 (1991).

    CAS Google Scholar

  • Valade, L., de Caro, D., Faulmann, C. & Jacob, K. TTF[Ni(dmit)2]2: from single crystals to thin layers, nanowires and nanoparticles. Coord. Chem. Round. 308433–444 (2016).

    CAS Google Scholar

  • Xie, LS, Skorupskii, G. & Dincă, M. Metal-organic frameworks that conduct electricity. Chem. Round. 1208536–8580 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Guo, X. & Facchetti, A. The journey of conductive polymers from discovery to application. Nat. Mater. 19922–928 (2020).

    ADS CAS PubMed Google Scholar

  • Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13190-194 (2014).

    ADS CAS PubMed Google Scholar

  • Kobayashi, A., Fujiwara, E. & Kobayashi, H. Single component molecular metals with extended TTF dithiolate ligands. Chem. Round. 1045243–5264 (2004).

    CAS PubMed Google Scholar

  • Kobayashi, Y., Terauchi, T., Sumi, S. & Matsushita, Y. Carrier generation and electronic properties of a pure single-component organic metal. Nat. Mater. 16109-114 (2017).

    ADS CAS PubMed Google Scholar

  • Venkateshvaran, D. et al. Approach to disorder-free transport in high-mobility conjugated polymers. Nature 515384–388 (2014).

    ADS CAS PubMed Google Scholar

  • Joo, Y., Agarkar, V., Sung, SH, Savoie, BM & Boudouris, BW An unconjugated radical polymeric glass with high electrical conductivity. Science 3591391–1395 (2018).

    ADS CAS PubMed Google Scholar

  • Plummer, J. Is metallic glass about to come of age? Nat. Mater. 14553-555 (2015).

    CAS PubMed Google Scholar

  • Hirata, A. et al. Geometric frustration of the icosahedron in metallic glasses. Science 341376–379 (2013).

    ADS CAS PubMed Google Scholar

  • Eisenberg, R. & Gray, HB Noninnocence in Metal Complexes: A Dawn of Dithiolene. Inorg. Chem. 509741–9751 (2011).

    CAS PubMed Google Scholar

  • McCullough, RD et al. Ligands building blocks for new molecular conductors: homobimetallic tetrathiafulvalene tetrathiolates and metallic diselenolenes and ditellurolenes. J. Mater. Chem. 51581 (1995).

    CAS Google Scholar

  • Xie, J. et al. Redox, transmetallation and stacking properties of tin, nickel and palladium compounds bridged by tetrathiafulvalene-2,3,6,7-tetrathiolate. Chem. Science. 111066-1078 (2020).

    CAS Google Scholar

  • de Caro, D. et al. TTF Metallic Thin Films[Ni(dmit)2]2 by electrodeposition on oriented silicon substrates (001). Adv. Mater. 16835–838 (2004).

    Google Scholar

  • Scott, RA Comparative X-ray Absorption Spectroscopic Structural Characterization of Nickel Metalloenzyme Active Sites. Phys. B Condens. Question 15884–86 (1989).

    Google Scholar CAS Announcements

  • Holder, CF & Schaak, RE Tutorial on X-ray powder diffraction to characterize materials at the nanoscale. ACS Nano 137359–7365 (2019).

    CAS PubMed Google Scholar

  • Tanaka, H., Okano, Y., Kobayashi, H., Suzuki, W. & Kobayashi, A. A three-dimensional synthetic metallic crystal composed of single-component molecules. Science 291285–287 (2001).

    ADS CAS PubMed Google Scholar

  • Vogt, T. et al. A LAXS (large sngle X-ray dcattering) and EXAFS (extended X-ray absorption fine structure) study of conductive amorphous nickel tetrathiolato polymers. Jam. Chem. Soc. 1101833–1840 (1988).

    CAS Google Scholar

  • Liu, Z et al. Control of the thermoelectric properties of organometallic coordination polymers through the design of ligands. Adv. Function Mater. 302003106 (2020).

  • Choy, CL, Leung, WP & Ng, YK Thermal conductivity of metallic glasses. J.Appl. Phys. 665335–5339 (1989).

    Google Scholar CAS Announcements

  • Sun, L. et al. A microporous, naturally nanostructured thermoelectric organo-metallic network with ultra-low thermal conductivity. Joule 1168-177 (2017).

    CAS Google Scholar

  • Craven, GT & Nitzan, A. Wiedemann–Franz Law for molecular hopping transport. Nano Lett. 20989–993 (2020).

    ADS CAS PubMed Google Scholar

  • Dou, JH et al. Signature of metallic behavior in organometallic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). Jam. Chem. Soc. 13913608–13611 (2017).

    CAS PubMed Google Scholar

  • Kaiser, AB Electronic transport properties of conductive polymers and carbon nanotubes. Program Reports. Phys. 641–49 (2001).

    Google Scholar CAS Announcements

  • Halim, J. et al. Variable range hopping and thermally activated transport in molybdenum-based MXenes. Phys. Rev. B 98104202 (2018).

    Google Scholar CAS Announcements

  • Lan, X et al. Quantum dot solids showing state-resolved band-like transport. Nat. Mater. 19323–329 (2020).

    ADS CAS PubMed Google Scholar

  • Kang, SD, Dylla, M. & Snyder, GJ Thermopower-conductivity relationship to distinguish transport mechanisms: polaron jump in CeO2 and band conduction in SrTiO3. Phys. Rev. B 97235201 (2018).

    Google Scholar CAS Announcements

  • Heeger, AJ Disorder-induced metal-insulator transition in conductive polymers. J. Supercond. 14261–268 (2001).

    Google Scholar CAS Announcements

  • Jiang, Y. et al. Synthesis of a metallic-organic copper compound 1,3,5-triamino-2,4,6-benzenetriol. Jam. Chem. Soc. 14218346–18354 (2020).

    CAS PubMed Google Scholar

  • Lee, K. et al. Polyaniline metal transport. Nature 44165–68 (2006).

    ADS CAS PubMed Google Scholar

  • Mazziotti, DA Large-scale semi-definite programming for many-electron quantum mechanics. Phys. Rev. Lett. 106083001 (2011).

    ADS PubMedGoogle Scholar

  • He, T., Stolte, M. & Würthner, F. Air-stable n-channel organic single-crystal field-effect transistors based on core chlorinated naphthalene diimide microstrips. Adv. Mater. 256951–6955 (2013).

    CAS PubMed Google Scholar

  • Huang, X. et al. Superconductivity in a copper(II)-based coordination polymer with a perfect Kagome structure. Angelw. Int. Chemistry Ed. 57146-150 (2018).

    CAS Google Scholar

  • Gill, NS & Nyholm, RS Complex halides of transition metals. Part I. Tetrahedral nickel complexes. J. Chem. Soc. 19593997–4007 (1959).

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy with IFEFFIT. J. Synchrotron radiation. 12537–541 (2005).

    CAS PubMed Google Scholar

  • Rehr, JJ & Albers, RC Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72621–654 (2000).

    Google Scholar CAS Announcements

  • Toby, BH & Von Dreele, RB GSAS-II: the genesis of a modern open-source general-purpose crystallography software package. J.Appl. Crystallologist. 46544–549 (2013).

    CAS Google Scholar

  • Yang, X., Juhas, P., Farrow, CL & Billinge, SJL XPDFsuite: An end-to-end software solution for high-throughput pair distribution function transformation, visualization, and analysis. https://arxiv.org/abs/1402.3163 (2014).

  • Morrison, C., Sun, H., Yao, Y., Loomis, RA, and Buhro, WE Methods for ICP-OES Analysis of Semiconductor Materials. Chem. Mater. 321760-1768 (2020).

    CAS Google Scholar

  • Ma, T., Dong, BX, Grocke, GL, Strzalka, J. & Patel, SN Leveraging sequential doping of semiconductor polymers to enable functionally graded materials for organic thermoelectrics. Macromolecules 532882–2892 (2020).

    Google Scholar CAS Announcements

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J.Phys. Condens. Question 21395502 (2009).

    Google Scholar PubMed

  • Giannozzi, P. et al. Advanced features for material modeling with Quantum ESPRESSO. J.Phys. Condens. Question 29465901 (2017).

    CAS PubMed Google Scholar

  • Marzari, N., Vanderbilt, D., De Vita, A. & Payne, MC Thermal contraction and disorder of the Al(110) surface. Phys. Rev. Lett. 823296–3299 (1999).

    Google Scholar CAS Announcements

  • Prandini, G., Marrazzo, A., Castelli, IE, Mounet, N. & Marzari, N. Accuracy and efficiency in solid-state pseudopotential calculations. NPJ calculation. Mater. 472 (2018).

    Google Scholar announcements

  • Lejaeghere, K. et al. Reproducibility in the calculations of the functional theory of the density of solids. Science 351aad3000 (2016).

    Google Scholar PubMed

  • Kokalj, A. XCrySDen – a new program for displaying crystal structures and electron densities. J.Mol. Chart. Model. 17176–179 (1999).

    CAS PubMed Google Scholar

  • Comments are closed.