3D isotopic density measurements by energy-resolved neutron imaging

  • Beckhoff, B., Kanngießer, B., Langhoff, N., Wedell, R. & Wolff, H. Practical X-Ray Fluorescence Analysis Handbook (Springer Science & Business Media, 2007).

    Google Scholar

  • Durrant, SF Inductively Coupled Plasma Mass Spectrometry by Laser Ablation: Achievements, Problems, Prospects. J.Anal. TO. Spectrum. 141385–1403 (1999).

    CAS Google Scholar Article

  • Kelly, TF & Miller, MK Atom probe tomography. Rev. Science. Instrument. 7831101 (2007).

    Google Scholar article

  • DeSamber, B. et al. Three-dimensional elemental imaging by micro-XRF synchrotron radiation: Developments and applications in environmental chemistry. Anal. Bioanal. Chem. 390267-271 (2008).

    Google Scholar article

  • Kanngießer, B., Malzer, W. & Reiche, I. A new setup for 3D micro X-ray fluorescence analysis – First archaeometric applications. Nucl. Instruments Methods Phys. Res. Sect B Beam Interact. Mater. Atoms 211259–264 (2003).

    Article on Google Scholar Ads

  • Miller, MK Atomic Probe Tomography: Analysis at the Atomic Level (Springer Science & Business Media, 2012).

    Google Scholar

  • Baruchel, J., Buffière, J.-Y. & Maire, E. X-ray tomography in materials science. (Hermès scientific editions, Paris, France, 2000).

  • Cnudde, V. & Boone, MN High-Resolution X-ray Computed Tomography in the Geosciences: A Review of Current Technology and Applications. Earth-Sci. Round. 1231–17 (2013).

    Article on Google Scholar Ads

  • Strobl, M. et al. Advances in neutron radiography and tomography. J.Phys. D.Appl. Phys. 42243001 (2009).

    Article on Google Scholar Ads

  • Sato, H., Kamiyama, T. & Kiyanagi, Y. Pulsed neutron imaging using resonance transmission spectroscopy. Nucl. Instruments Methods Phys. Res. Sect. An Accel. Spectrum. Detect. Assoc. Equip. https://doi.org/10.1016/j.nima.2009.01.124 (2009).

    Google Scholar article

  • Tremsin, AS, Feller, WB & Downing, RG Optimizing the Efficiency of Microchannel Plate (MCP) Neutron Imaging Detectors. I. Square channels with 10B doping. Nucl. Instruments Methods Phys. Res. Sect. An Accel. Spectrum. Detect. Assoc. Equip. https://doi.org/10.1016/j.nima.2004.09.028 (2005).

    Google Scholar article

  • Lisowski, PW, Bowman, CD, Russell, GJ & Wender, SA Spallation Neutron Sources at Los Alamos National Laboratory. Nucl. Science. Eng. 106208–218 (1990).

    CAS Google Scholar Article

  • Woracek, R. et al. Bragg-edge neutron imaging for mapping strains under in situ tensile loading. J.Appl. Phys. https://doi.org/10.1063/1.3582138 (2011).

    Google Scholar article

  • Woracek, R., Santisteban, J., Fedrigo, A. & Strobl, M. Diffraction in neutron imaging – A review. Nucl. Instrument. Physical methods. Res. Sect. A spectrum of accelerators. Detectors Assoc. Equip. https://doi.org/10.1016/j.nima.2017.07.040 (2018).

    Google Scholar article

  • Tran, K.V. et al. Neutron spectral tomography. Mater. Today Adv. https://doi.org/10.1016/j.mtadv.2021.100132 (2021).

    Google Scholar article

  • Watanabe, K. et al. Cross-sectional imaging of the quenched region in a steel rod using energy-resolved neutron tomography. Nucl. Instruments Methods Phys. Res. Sect. An Accel. Spectrometers, Detect. Assoc. Equip. https://doi.org/10.1016/j.nima.2019.162532 (2019).

    Google Scholar article

  • Larson, New Mexico Updated User Guide for SAMMY Multilevel R Matrix Fits to Neutron Data Using Bayes Equation. (1998).

  • Moxon, MC, Ware, TC and Dean, CJ REFIT-2009 A least squares fitting program for neutron transmission resonance analysis. Capture, Fission Scatt. Data User’s Guide. REFIT-2009-10 (UKNSFP243, 2010) (2010).

  • Reich, CW & Moore, MS Multilevel formula for the fission process. Phys. Round. 111929–933 (1958).

    ADS CAS Article Google Scholar

  • Festa, G. et al. Neutron resonance transmission imaging for 3D elemental mapping at the ISIS spallation neutron source. J.Anal. TO. Spectrum. 30745–750 (2015).

    CAS Google Scholar Article

  • Tremsin, AS et al. Real-time visualization and quantification of crystal growth by energy-resolved neutron imaging. Science. representing 71–10 (2017).

    Google Scholar article

  • Kai, T. et al. Visibility estimation for neutron resonance absorption radiography using a pulsed neutron source. Phys. Procedure 43111–120 (2013).

    ADS CAS Article Google Scholar

  • Hasemi, H. et al. Evaluation of nuclide density by neutron resonance transmission at the NOBORU instrument in J-PARC/MLF. Nucl. Instruments Methods Phys. Res. Sect. An Accel. Spectrometers, Detect. Assoc. Equip. 773137-149 (2015).

    ADS CAS Article Google Scholar

  • Janney, DE and Papesch, CA FCRD Transmutation Fuels Handbook 2015. Idaho National Laboratory report number INL/EXT-15-36520. https://doi.org/10.2172/1239879 (2015).

  • Brown, DA et al. ENDF/B-VIII. 0: The 8th major version of the nuclear reaction data library with cross sections from the CIELO project, new standards and thermal diffusion data. Nucl. Data sheets 1481–142 (2018).

    ADS CAS Article Google Scholar

  • Schillebeeckx, P. et al. Determination of resonance parameters and their covariances from neutron-induced reaction cross section data. Nucl. Data sheets 1133054–3100 (2012).

    ADS CAS Article Google Scholar

  • Tremsin, AS et al. Detection efficiency, spatial and temporal resolution of thermal and cold neutron counting MCP detectors. Nucl. Instruments Methods Phys. Res. Sect. An Accel. Spectrometers, Detect. Assoc. Equip. https://doi.org/10.1016/j.nima.2009.01.041 (2009).

    Google Scholar article

  • Zawisky, M., Bastürk, M., Rehacek, J. & Hradil, Z. Neutron tomographic investigations of boron alloy steels. J. Nucl. Mater. 327188-193 (2004).

    ADS CAS Article Google Scholar

  • Tremsin, AS, et al. Non-contact measurement of gas partial pressure and elemental composition distribution using energy-resolved neutron imaging. AIP Advances 7.1015315 (2017).

    Google Scholar article

  • Losko, AS et al. Separation of water and ion absorption in porous materials using energy-resolved neutron imaging. OJM. https://doi.org/10.1007/s11837-020-04101-y (2020).

    Google Scholar article

  • Losko, AS et al. New perspectives for neutron imaging thanks to advanced event mode data acquisition. Science. representing https://doi.org/10.1038/s41598-021-00822-5 (2021).

    PubMed Article PubMed Central Google Scholar

  • Fernandez, JC et al. Laser-plasmas in the relativistic transparency regime: Science and applications. Phys. Plasma 2456702 (2017).

    Google Scholar article

  • Zimmer, M. et al. Demonstration of non-destructive, isotope-sensitive materials analysis using a short-pulse laser epithermal neutron source. Nat. Commmon. 13.11–11 (2022).

    Google Scholar

  • Mocko, M., Muhrer, G. & Tovesson, F. Advantages and limitations of nuclear physics experiments at an ISIS-class spallation neutron source. Nucl. Instruments Methods Phys. Res. Sect. An Accel. Spectrometers, Detect. Assoc. Equip. 589455–464 (2008).

    ADS CAS Article Google Scholar

  • Windsor, CG Pulsed neutron scattering (Taylor and Francis, 1981).

    Google Scholar

  • Chadwick, MB ENDF Nuclear Data in the Physical, Biological and Medical Sciences. Int. J. Radiat. Biol. 8810–14 (2012).

    CAS Google Scholar Article

  • Bohr, N. Neutron Capture and Nuclear Constitution. Nature 137344–348 (1936).

    ADS CAS Article Google Scholar

  • Breit, G. & Wigner, E. Capture of slow neutrons. Phys. Round. 49519 (1936).

    ADS CAS Article Google Scholar

  • Lamb, WE Capture of Neutrons by Atoms in a Crystal. Phys. Round. https://doi.org/10.1103/PhysRev.55.190 (1939).

    MATH Google Scholar Article

  • Postma, H., Perego, RC, Schillebeeckx, P., Siegler, P. & Borella, A. Analysis and applications of neutron resonance capture. J. Radioanal. Nucl. Chem. 27195–99 (2007).

    CAS Google Scholar Article

  • Harvey, J. Experimental neutron resonance spectroscopy (Elsevier, 2012).

    Google Scholar

  • Comments are closed.